

Novel Remapping Method for HR-EBSD based on Computer Vision Algorithm

<u>Chaoyi Zhu¹</u>, Kevin Kaufmann², Kenneth Vecchio^{1,2*}

¹Materials Science and Engineering Program, UC San Diego, La Jolla, CA 92093, USA

²Department of NanoEngineering, UC San Diego, La Jolla, CA 92093, USA

Total Deformation

Crystal Deformation

deform crystal lattice

 $\mathbf{\nabla} \mathbf{F}^{e}$

(rotation and elastic stretch)

Deformation gradient tensor:

 $F = F^e F^p$

Elastic stretch: shift of the zone axis and changes in the interplanar angles

$$\varepsilon = \frac{1}{2} \left(F^e + F^{e^T} \right) - I$$

Lattice rotation: whole pattern rotation

$$\omega = \frac{1}{2} \left(F^e - F^{e^T} \right)$$

create and move dislocations

Fp

K.C. Le *et al.*, 2015; Kröner, 1958; B.C. Larson *et al*, 2007 10/31/2020

F⁄

HR-EBSD (Cross-Correlation)

NanoEngineering Materials Research Center

Cross-Correlation

Higher level of sensitivity:

- Rotation: $1x10^{-4}$ rad or 0.006 °
- Elastic strain: 1x10⁻⁴
- GND lower noise floor:
 - Hough: $\Delta \rho \approx 10^{14} \text{ lines/m}^2$
 - HR-EBSD: $\Delta \rho \approx 10^{12}$ lines/m²

 $f_{test} * f_{ref} = \mathfrak{I}^{-1}[\mathfrak{I}(f_{test}) \cdot conj(\mathfrak{I}(f_{ref}))]$ 10/31/2020 Wilkinson et al, 2006

Shift of the XCF peak from the origin represents the shift of the test ROI from reference ROI.

HR-EBSD (Cross-Correlation)

NanoEngineering Materials Research Center

UC San Diego

NanoEngineering

JACOBS SCHOOL OF ENGINEERING

Non-linear minimization method to obtain deformation gradient tensor (F^e):

$$minf(F^{e}) = \sum_{\{ROI\}} \frac{1}{2} \left| \frac{Z^{*}}{(F^{e} \cdot \vec{r}) \cdot \vec{k}} F^{e} \cdot \vec{r} - (\vec{r} + \vec{q}) \right|^{2} \stackrel{\vec{r}: \text{ center of ROI}}{Z^{*}: \text{ detector distance}} \\ \vec{q}: \text{ measured shift}$$

 F^e between two images can be calculated from shifts measured between many regions of interest (ROIs).

Reference Pattern

^{10/31/2020} Maurice *et al.*, 2012

Cross-Correlation: Limitation

0.01

0.009

0.008

0.007

0.006 Error

Rotation 0.005

0.003

0.002

0.001

NanoEngineering Materials Research Center

Cross-Correlation Between Patterns of Large Relative Rotations

Rotation and Strain Error

0.15

Reference Pattern

0.1

Applied rotation ϕ_1 (ω_{12}) in rad

0.05

 $-\omega_{31}$ -

Test Pattern

Total Shift

XCF peak changes at higher rotations

Multiple peaks

UC San Diego

NanoEngineering

JACOBS SCHOOL OF ENGINEERING

• Peak shape distortion

Pattern Remapping Technique

Total deformation gradient tensor

UC San Diego

NanoEngineering

JACOBS SCHOOL OF ENGINEERING

 $F_f = F_i \cdot R_f$

Remapping using orientation matrix (Maurice *et al*, 2012)

NanoEngineering

Materials Research Center

- Remapping using cross-correlation (Britton *et al*, 2012)
- 3. Global matching using computer vision for remapping (Zhu et al, 2019)

Britton *et al*, Ultramicroscopy 2012 Maurice *et al.*, Ultramicroscopy 2012 Zhu et al, Ultramicroscopy 2020

NanoEngineering

9

Cross-Correlation (after Remapping)

NanoEngineering Materials Research Center

Cross-Correlation (No remapping)

UC San Diego

NanoEngineering

JACOBS SCHOOL OF ENGINEERING

 $F_f = F_i \cdot R_f$

Cross-Correlation (After remapping)

• No peak distortion for the cross-correlation after remapping

0.6

0.4

0.2

• Single high intensity peak only

GPU Acceleration for Image Registration Materials Research Center

UC San Diego

NanoEngineering

JACOBS SCHOOL OF ENGINEERING

NanoEngineering

UC San Diego

JACOBS SCHOOL OF ENGINEERING NanoEngineering

Angular Resolution of Different Methods

NanoEngineering Materials Research Center

Reference pattern: [0,0,0,] Test pattern: [i,0,0] i=0°~10°

(a) cross-correlation

- (b) image registration
- (c) 1st pass cross-correlation for remapping + 2nd pass cross-correlation for infinitesimal deformation
- (d) 1st pass image registration for remapping + 2nd pass cross-correlation for infinitesimal deformation
- image registration (b) can not be used alone for accuracy.
- Method (d) outperforms (a) and (b).
- (d) slightly improves angular resolution compared to (c).

Phantom strain and stress

UC San Diego

NanoEngineering

JACOBS SCHOOL OF ENGINEERING

Unregistered

Registered

Unregistered Residual

Registered Residual

UC San Diego

NanoEngineering

Zoom and Shift Correction

Zoom or Shrinkage Correction: ratio between detector distance (DD) between the reference and test patterns.

Shift Correction: difference in beam position on the sample.

Britton *et al*, Ultramicroscopy 2011

Test Sample: Single crystal Silicon (200 µm by 200 µm)

JACOBS SCHOOL OF ENGINEERING NanoEngineering

Additively Manufactured Inconel 625

NanoEngineering Materials Research Center

25 µm

Reference Misorientation

EBSP

Band Contrast

Reference points obtained based on: band contrast mean angular deviation

Lattice Rotation, Strain, Stress

ω_{12} ω_{31} ω_{23} 0.04 0.02 0 -0.02 -0.04 ϵ_{12} ϵ_{11} e22 ×10⁻ σ_{12} σ_{11} σ_{22}

UC San Diego

NanoEngineering

JACOBS SCHOOL OF ENGINEERING

- Columnar growth in the large grain (sub-grain structure)
- Large compressive or tensile residual stresses in the columnar grain.
- Stress concentration near triple junctions and high angle grain boundaries (strain compatibility).

NanoEngineering

Materials Research Center

Hough vs HR-EBSD based GND Density

- High density dislocation structures are very similar between the two
- Low density dislocation structures are more clearly revealed in HR-EBSD based GND map

10/31/2020

UC San Diego

NanoEngineering

JACOBS SCHOOL OF ENGINEERING

Summary

- Multiresolution image registration is a fast and accurate remapping for HR-EBSD.
- Phantom strain < 2×10^{-4} and phantom stress < 30 MPa.
- Lower GND noise floor ($\Delta \rho \approx 2 \ge 10^{12} \text{ lines/m}^2$)
- Additively manufactured Inconel 625 shows significant residual stress build-up in the columnar grain region/ stress concentration near grain boundaries and triple junctions (strain compatibility).

<u>Zhu, C</u>., Kaufmann, K. and Vecchio, K., 2020. Novel Remapping Approach for HR-EBSD based on Demons Registration, Ultramicroscopy

zchaoyi@andrew.cmu.edu

10/31/2020

HR-EBSD (Essentials)

Deformation gradient tensor F between two images can be calculated from shifts measured between many regions of interest (ROIs). Non-linear minimization method to obtain deformation gradient tensor:

$$minf(F) = \sum_{\{ROI\}} \frac{1}{2} \left| \frac{Z^*}{(F \cdot \vec{r}) \cdot \vec{k}} F \cdot \vec{r} - (\vec{r} + \vec{q}) \right|^2 \text{ (Levenberg-Marquardt)}$$
$$*F_{\text{sample}} = R_{\theta_{tilt}} F R_{\theta_{tilt}}^T \text{ (Coordinate Transformation)}$$
$$F_{sample} = PDQ^T \text{ (SVD)}$$
$$R_{sample} = PQ^T \text{ (Rotation Matrix)}$$

 ω can then be obtained through parametrizing R_{sample} using Rodrigues vector i.e. axis-angle pair (m_k , θ)

$$\omega_{ij} = -\varepsilon_{ijk} m_k \theta = -\varepsilon_{ijk} \theta_k \qquad (Lattice Rotation Tensor)$$

$$\varepsilon_{sample} \approx \frac{1}{2} \left(F_{sample} + F_{sample}^{T} \right) - I$$

(Residual Strain Tensor)

 $\sigma_{sample} = C : \varepsilon_{sample} (t = \sigma_{sample} Z_s = [0,0,0])$ (Residual Stress Tensor)

10/31/2020

San Diego

NanoEngineering

JACOBS SCHOOL OF ENGINEERING

*Coordinate transformation is required to bring it from detector frame (X_d, Y_d, Z_d) to sample frame (X_s, Y_s, Z_s)

20

Higher level of sensitivity:

- Rotation: whole diffraction pattern moving (1x10⁻⁴ rad)
- Elastic stretch: change interplanar angles and lattice spacing (1x10⁻⁴)
- GND lower limit:
 - $\Delta \theta = 0.5^{\circ}$ (Hough based) $\rightarrow \Delta \rho \approx 2 \times 10^{14} \text{ lines/m}^2$
 - $\Delta \theta = 10^{-4} \text{ rads}$ (XCF based) $\rightarrow \Delta \rho \approx 2 \text{ x } 10^{12} \text{ lines/m}^2$

Obtaining the total shift vectors

NanoEngineering Materials Research Center

UC San Diego

NanoEngineering

JACOBS SCHOOL OF ENGINEERING

Hough vs HR-EBSD based Lattice Rotation

Lattice Rotation (rad) 0 700-

-0.04

0

50

NanoEngineering Materials Research Center

Distance (µm)

UC San Diego

NanoEngineering

JACOBS SCHOOL OF ENGINEERING

HR-EBSD ω_{31}

HR-EBSD

Hough-EBSD

150

100

Distance (µm)

HR-EBSD ω_{23}

Hough-EBSD lattice rotation tensor

$$\omega_{23} \approx \frac{1}{2}(g_{23} - g_{32})$$
$$\omega_{31} \approx \frac{1}{2}(g_{31} - g_{13})$$
$$\omega_{12} \approx \frac{1}{2}(g_{12} - g_{21})$$

- Nominally similar values and trend, especially ω_{23}
- Hough based lattice rotation tensor can be used as a quick check

Hough Indexing

NanoEngineering Materials Research Center

