

Computer Vision Approach to Study Surface Deformation of Materials

<u>Chaoyi Zhu¹</u>, Haoren Wang², Kevin Kaufmann², Kenneth Vecchio^{1,2*}

¹Materials Science and Engineering Program, UC San Diego, La Jolla, CA 92093, USA ²Department of NanoEngineering, UC San Diego, La Jolla, CA 92093, USA

Motivation

Image Registration

Effect of radiation treatment on tumor near neck region

Wang et al., 2005

- 1. Can we use it to map strain?
- 2. How accurate can this be?

Digital Image Correlation

The moving image (M) on a deformable grid diffuses through the semi-permeable boundaries (static contours) of the fixed image (F) by the action of effectors (demons) along the boundaries.

Thirion, 1995

UC San Diego Displacement Field Determination: Optical Flow Equation NanoEngineering Materials Research Center

Assumptions:

- 1. Small displacement
- 2. Intensity of moving image is constant with time

Fixed image(f): deformed image Moving image(m): undeformed image

1. Optical flow equation: $\vec{u} \cdot \nabla I_f(x, y) = I_m(x, y) - I_f(x, y)$

2. Modified displacement field equation:

$$\vec{\boldsymbol{u}} = \frac{\left[I_m(x,y) - I_f(x,y)\right] \nabla I_f(x,y)}{\nabla I_f(x,y)^2 + \left[I_m(x,y) - I_f(x,y)\right]^2}$$

Zhu et al, 2020

Thirion, 1995 Simoncelli *et al*. , 1991

NanoEngineering

Materials Research Center

Iterative Algorithm:

Final transform T to map moving image M space towards fixed image space F (i.e. $T(M) \rightarrow F$)

$$T_i(M) = T_{i-1}(M) + \vec{u}_i(M)$$

What about large deformation?

10/31/2020 Thirion, 1995

Down-sample the image -> deformation information from a larger field of view!

Zhu et al, 2020

UC San Diego

NanoEngineering

JACOBS SCHOOL OF ENGINEERING

Displacement Gradient Terms:

$$\frac{\partial u_x}{\partial X}(i,j) = \frac{1}{2} [u_x(i+1,j) - u_x(i-1,j)]$$

2D-Deformation Gradient Tensor:

$$F = \begin{pmatrix} \frac{\partial x}{\partial X} & \frac{\partial x}{\partial Y} \\ \frac{\partial y}{\partial X} & \frac{\partial y}{\partial Y} \end{pmatrix} = \begin{pmatrix} \frac{\partial (X + u_x)}{\partial X} & \frac{\partial (X + u_x)}{\partial Y} \\ \frac{\partial (Y + u_y)}{\partial X} & \frac{\partial (Y + u_y)}{\partial Y} \end{pmatrix} = \begin{pmatrix} 1 + \frac{\partial u_x}{\partial X} & \frac{\partial u_x}{\partial Y} \\ \frac{\partial u_y}{\partial X} & 1 + \frac{\partial u_y}{\partial Y} \end{pmatrix}$$

Green-Lagrange Strain Tensor:

$$E = \frac{1}{2} (F^T \cdot F - I) = \begin{pmatrix} E_{xx} & E_{xy} \\ E_{yx} & E_{yy} \end{pmatrix}$$

UC San Diego Validation Experiment : Computationally Deformed Images NanoEngineering Materials Research Center

10/31/2020

Zhu et al, 2020

UC San Diego Image Warping via Inverse Mapping **Materials Research Center** JACOBS SCHOOL OF ENGINEERING NanoEngineering

Applied Scale Factor vs Resultant Strains

Define the geometric transformation:

D =	(1	$+ e_x$		0	
		0	1 -	- 0.3 <i>e</i>	$_{x})$

Image warping with inverse mapping:

 $X = D^{-1}x$

X: undeformed coordinates (floats) x: deformed coordinates (integers)

Resampling:

Linear/nearest/cubic interpolation

NanoEngineering

Parametric Study

Effect of Pyramid Level on Registration Accuracy

100 iterations at each pyramid level SG-filter size: 21 by 21

L2-norm: image similarity metric

Number of Pyramid Level>8

UC San Diego NanoEngineering Effect of Number of Iterations on Registration Accuracy JACOBS SCHOOL OF ENGINEERING **Materials Research Center** NanoEngineering (a) Iterations=1 (b) Iterations=10 (c) Iterations=20 (d) Iterations=30 (e) Iterations=40 Number of pyramid level=8 SG-filter size: 21 by 21 Iterations=50 (g) Iterations=60 (h) Iterations=70 (i) Iterations=80 (j) Iterations=90 (f) (k) (I) Measured Exx 1.2 Exx Measured E 10^{2} Measured E Expected Exx Measured Strain 0.8 Expected Ex L2-norm Expected E 0.6 0.4 10 Number of Iterations>=40 0.2 0 -0.2 10⁰ 20 80 1 10 20 30 40 50 60 70 80 90 0 40 60 Number of Iterations Number of Iterations

Percentage strain error<0.035% for all components

NanoEngineering Materials Research Center

WARNING: not very sensitive to subpixel level shift information

UC San Diego

NanoEngineering

JACOBS SCHOOL OF ENGINEERING

Image registration approach slightly underestimates the expected Green-Lagrange strain probably due to out-of-surface displacement caused by significant rotation of grains.

0

0.15

50

100

Time (s)

150

0

0.05

0.1

Engineering Strain

JACOBS SCHOOL OF ENGINEERING NanoEngineering

Experimental Validation: Bending Test

NanoEngineering Materials Research Center

Three Point Bending

Three Point Bending (Video)

Experimental Validation: Bending Test

NanoEngineering Materials Research Center

UC San Diego

NanoEngineering

JACOBS SCHOOL OF ENGINEERING

- DIC calculated using Ncorr
- Nice agreement between the two methods.
- Small difference on the shoulders of E_{xy} component

- Multiresolution image registration approach is an effective method to map large surface strain.
- A good starting point for the variables in the registration could be: 8 pyramid level, 40 iterations and SG filter size 21 by 21.
- Percentage error in the measured Green-Lagrange strain tensor components <0.035%.
- Validation with tensile test and bending test showed good agreement with extensometer and DIC calculation respectively.

<u>Zhu, C.</u>, Wang, H., Kaufmann, K. and Vecchio, K.S., 2020. A computer vision approach to study surface deformation of materials. *Measurement Science and Technology*, *31*(5), p.055602.

zchaoyi@andrew.cmu.edu

UC San Diego

JACOBS SCHOOL OF ENGINEERING NanoEngineering Strain Error Analysis under Rigid Body Rotation (Computationally Deformed Images)

NanoEngineering Materials Research Center

Ncorr v1.2

> Open source 2D-DIC MATLAB software
> RGDIC - Contiguous Circular Subsets - Biquintic B-Spline Interpolation - High Strain Analysis
> Inverse Compositional Image Alignment - Mex - OpenMP

The strain error obtained using image registration is similar to the performance of DIC (Ncorr).

'cross-correlation' represents the traditional DIC performed with Ncorr software.

