Carnegie Mellon University

Orientation, Pattern Center Refinement and Deformation State Extraction through Global Optimization Algorithms

Chaoyi Zhu^{a,*}, Christian Kurniawan^a, Marcus Ochsendorf^a, Dayong An^b, Stefan Zaefferer^b, Marc De Graef^a

^a Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
 ^b Max-Planck-Institut f
ür Eisenforschung, Max-Planck-Str. 1, 40237, D
üsseldorf, Germany

Funding Source: DoD Vannevar-Bush Faculty Fellowship (N00014-16-1-2821)

Electron Backscatter Diffraction

Electron backscatter diffraction is a fully automated SEM-based characterization technique to extract structural information from materials to study their microstructure, texture, defect density, residual strain, etc.

Zhu et al, Microscopy and Microanalysis, 2019

The Pattern Matching Problem

Forward model (f) describing the accurate diffraction physics:

I_{simulated}=f (keV, phase, geometry, orientation, pattern center, elastic deformation)

Known Partially known Unknown

How do we improve the similarity between $I_{simulated}$ and $I_{experimental}$?

- Realistic forward model (f)
- Improve the accuracy of orientation and PC
- Determine the elastic deformation tensor

Dynamical Simulation of EBSD Pattern: Forward Model

Ground truth: Ni @ 30keV

Deterministic part: dynamical scattering model uses scattering matrix to predict probability of BSE distribution.

Stochastic part: Monte Carlo electron trajectory simulation to predict spatial and energy distributions for BSEs.

Geometric part: geometrical parameters-detector tilt, sample tile, crystal orientation, pattern center, deformation tensor.

Carnegie Mellon University

Callahan and De Graef, Microscopy and Microanalysis, 2013

Approximate Model for Deformation Tensor Inclusion

$$(X,Y)_{L} = \ell(F^{-1}(L_{q}[p]))$$

Approximate Deformation Model

Rotated and Undeformed Pattern Coordinates:

$$(X,Y)_L = \mathcal{L}(L_q[\widehat{\boldsymbol{p}}])$$

 \hat{p} : detector pixel coordinates L_q :quaternion rotation operator q: (passive) rotation required to rotation \mathcal{L} : square Lambert transformation.

Rotated and Deformed Pattern Coordinates:

$$(X,Y)_L' = \mathcal{L}(F^{-1}(L_q[\widehat{\boldsymbol{p}}]))$$

 F^{-1} : interpolation on the undeformed master

Carnegie Mellon

University

5

Formulation of the Optimization Problem

Definition of an optimization problem:

 $\max_{x \in S} \operatorname{sim} (f(\mathbf{x}), I_{experimental})$

seek for a minimizer x^* that gives best match with the experimental pattern: sim (f(x^*), $|_{experimental}$) \geq sim (f(x), $|_{experimental}$)

Bounded optimization problem:

Initial estimate: orientation=(φ_1 , Φ , φ_2), PC=(PCx, PCy, DD)

Optimized values: orientation*= $(\varphi_1, \Phi, \varphi_2) \cdot s$, PC * =(PCx, PCy, DD) +pc

What about deformation?

Carnegie Mellon University

sim: similarity metric; x: n-dimensional parameter vector; S: subset of \mathbb{R}^n

Formulation of the Optimization Problem

Elastic deformation tensor contains the rotation and stretch:

Optimized values : PC*=(PCx, PCy, DD) +pc

Elastic deformation tensor (8 degrees of freedom):

$$F = I + \begin{pmatrix} \Delta \beta_{11} & \beta_{12} & \beta_{13} \\ \beta_{21} & \Delta \beta_{22} & \beta_{23} \\ \beta_{31} & \beta_{32} & 0 \end{pmatrix} + \frac{\beta_{33}I}{\text{EBSD insensitive to spherical strain}!!!$$

For isotropic elastic material ($\sigma_{33} = 0$; orientation=[0,0,0]):

$$\beta_{33} = \frac{-\lambda(\Delta\beta_{11} + \Delta\beta_{22})}{3\lambda + 2G} \qquad \lambda = \frac{Ev}{(1+v)(1-2v)} \qquad G = \frac{E}{2(1+v)} \qquad \begin{array}{c} \text{Carnegie} \\ \text{Mellon} \\ \text{University} \end{array}$$

Hardin et al, Journal of Microscopy, 2015

Pang et al, Ultramicroscopy, 2019

Carnegie Mellon

University

Sloppy Feature Scaling: Rotation Correction

Singh et al, Journal of Applied Crystallography, 2017

University

Population Based Global Optimization

Wikipedia.com/ Tanaka et al, Ultramicroscopy, 2019

Differential Evolution Algorithm

Selection	$\boldsymbol{x}_{i,g+1} = \begin{cases} \boldsymbol{u}_{i,g+1} & \text{if } f(\boldsymbol{u}_{i,g+1}) \leq f(\boldsymbol{x}_{i,g}) \\ \boldsymbol{x}_{i,g} & \text{otherwise} \end{cases}$	Carnegie Mellon University
Crossover	$\boldsymbol{u}_{i,g+1} = u_{j,i,g+1} \begin{cases} v_{j,i,g+1} & if \ rand_j \leq C_r \ or \ j = j_{rand} \\ x_{j,i,g} & otherwise \end{cases}$	
	$v_{i,g+1} = x_{best,g} + F(x_{r_1,g} + x_{r_2,g} - x_{r_3,g} - x_{r_4,g})$	DE/ best /2
	$v_{i,g+1} = x_{best,g} + F(x_{r_1,g} - x_{r_2,g})$	DE/best/1
	$v_{i,g+1} = x_{i,g} + F(x_{best,g} - x_{i,g} + x_{1,g} - x_{r_2,g})$	DE/rand-to-best/1
	$\boldsymbol{v}_{i,g+1} = \boldsymbol{x}_{r_1,g} + \boldsymbol{F}(\boldsymbol{x}_{r_2,g} + \boldsymbol{x}_{r_3,g} - \boldsymbol{x}_{r_4,g} - \boldsymbol{x}_{r_5,g})$	DE/rand/2
Mutation	$v_{i,g+1} = x_{r_1,g} + F(x_{r_2,g} - \mathbf{x}_{r_3,g})$	DE/rand/1
Initialization	$x_{i,g} = x_{j,i,g}$ $j \in \{1,, D\}, i \in \{1,, N_p\}, g \in \{1,, g_{max}\}$.}

R. Storn, K. Price, Journal of Global Optimization, 1997

Hyperparameter Tuning

- Crossover probability (C_r): 0.7-0.9 (default:0.9)
- Mutation factor (F): 0.2-0.5 (default:0.5)
- Number of generations (g_{max}) : 50-100 (default:100)
- Initial Population size (N_p): 10D

Carnegie Mellon University

Zhu et al, Ultramicroscopy, 2021 (Under review)

Mutation Schemes

13

Noise sensitivity

g_{max} =100, Np=60, Cr=0.9 and F = 0.5 (DE/rand/1)

Zhu et al, Ultramicroscopy, 2021 (Under review)

Hybrid Optimization: DE+NMS

Zhu et al, Ultramicroscopy, 2021 (Under review)

Zhu et al, Ultramicroscopy, 2021 (Under review)

Deformation Tensor Inference: Simulated Patterns

Absolute Strain Mapping with Any Reference Pattern

- 1. Pattern pre-processing: adaptive histogram equalization, high-pass/low-pass filter
- 2. Determine the reference pattern to be used and optimize its PC and orientation
- 3. Use optimized PC and determine the strain tensor of reference pattern
- 4. Use cross-correlation based HR-EBSD to determine the strain map relative to reference
- 5. Strain state correction based on strain state of the reference pattern

Zhu et al, Ultramicroscopy, 2021 (Under review)

Carnegie Mellon

University

Experimental Pattern Pre-Processing

Zhu et al, Ultramicroscopy, 2021 (Under review)

Experimental Validation: Low Cycle Fatigued TRIP Steel

Zhu et al, Ultramicroscopy, 2021 (Under review)

Summary

• The differential evolution algorithm outperforms particle swarm algorithm due to the nature of mutation.

• The search space for differential evolution is feasible up to ± 20 disorientation and ± 10 % detector width.

• Simulated undeformed patterns demonstrate an accuracy of ~0.04° for orientation and ~0.02% detector width for pattern center.

• Noisy simulated deformed patterns reveal an accuracy of shear strain and rotation components ~0.001 and ~0.002 for the normal strain.

Acknowledgement

Contributors to the EMsoft Project: Patrick Callahan, Saransh Singh, Stuart Wright, Elena Pascal, Will Lenthe, Zihao Ding, Joseph Tessmer, Ke-Wei Jin, Michael Atkinson, Joao Fonseca, Michael Jackson, Joey Kleingers, Hakon Wiik Anes, McLean Echlin.

Other people in the group: Marcus Ochsendorf, Christian Kurniawan, Maxwell Lee, Ke-wei Jin, Michael Kitcher, Clement Lafond

Github Link: https://github.com/EMsoft-org/EMsoft

Carnegie Mellon University